Abstract

ABSTRACTRecent caliche, including nodules, pisolites, crusts, internal sediment, speleothem deposits, and spherulites, has formed within the dolomitic Cretaceous Edwards Formation of central Texas. As weathering altered the host strata, rhombic crystals of calcite were precipitated concomitantly with dissolution of the dolomite, thereby forming nodules. The highly altered dolomite (i.e. pulverulite) was then removed and spar, internal sediment, and travertine accumulated in the internodular voids. Nodular masses of calcite and dolomite are the most prominent constituent of the caliche. Some of the nodules have a well developed concentric structure as well as other characteristics similar to hypersaline pisolites. Features which appear to be useful in distinguishing caliche from hypersaline pisolites are: regional geological setting, association with other caliche and palaeosoil deposits, types of fossils present, and the presence of rhombic calcite and/or bladed sparry calcite with triangular shaped cross‐section. A brick‐like calcite texture and relict aragonite rays characterize hypersaline pisolites. Incipient neomorphism of the nodules and pisolites has resulted in the development of a radial pattern of spar within these structures. Geopetal deposits of internal sediment, including terra rossa soil, inhibited spar growth in the upward direction; consequently, spar is much better developed on the undersides of pisolites. Crusts and travertine flowstone (speleothem) deposits are intimately associated with the nodular masses and internal sediment. The brecciated thin crusts and travertine flowstone are end products of the same processes. The crusts formed during times of periodic desiccation of the growing surface while the flowstone formed when water was relatively abundant. Spherulitic bodies within the caliche, commonly 1–2 mm in diameter, display a radial texture and yet are composed of single crystals of calcite. The structures are the product of neomorphosed Microcodium or Microcodium‐like globular bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.