Abstract
The basement rocks of Abu Marawat area comprise serpentinites (oldest), metavolcanics and their equivalent pyroclastics, intrusive metagabbro–diorite complex, synkinematic granitoids, Hammamat sediments and basic intrusion (youngest). Remote sensing ETM+ data of Abu Marawat area were analyzed, and band ratios technique was applied to discriminate between different varieties of these basement rocks. Serpentinites are represented by lensoidal bodies tectonically incorporated in the metavolcanics. On band ratio 5/7 image, they are characterized by very bright image signature. The metavolcanics comprise basalts, andesite and subordinate dacites together with their equivalent pyroclastics. They were regionally metamorphosed up to the greenschist facies and exhibit dark grey image signatures on band ratio 5/7 image. The metagabbro–diorite complex is made up of metagabbros, diorites and quartz diorites, whereas the synkinematic granitoids are formed of tonalites and granodiorites. The band ratio 5/7 image illustrates tonalites with dark image signature, whereas metagabbro–diorites and granodiorites exhibit grey image signature. The metavolcanic suites are of island arc setting, where metabasalts are of tholeiitic affinity, while the meta-andesites and metadacites are of calc-alkaline character. The metagabbroic and granitoid rocks are of I-type, calc-alkaline affinity and were formed in arc tectonic setting. They are enriched in LIL elements and depleted in Nb and HFS elements, a characteristic feature of subduction-related magmatism. The regular variation trends among the major and trace elements as well as the coincidence of the plotted samples favor the assumption that they are comagmatic and formed by processes such as fractional crystallization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.