Abstract
Layered mafic intrusions (LMI) are sporadically distributed in the Early Permian Tarim large igneous province (LIP), NW China, and are crosscut by numerous contemporaneous dykes. The Xiaohaizi wehrlite intrusion is composed mainly of olivine (Fo69–75), clinopyroxene (Mg# = 75–84), intercumulus plagioclase (An53–86) and Fe–Ti oxides. Both petrography and mineral compositions suggest that olivine and clinopyroxene crystallized earlier than plagioclase and Fe–Ti oxides. The dykes are of alkali basalt to trachyandesite with low Mg# (35–39). The least-contaminated dykes display strong rare earth element (REE) fractionation, enrichment of Nb and Ta, and depletion of Pb relative to other similarly incompatible elements, bearing strong similarity to ocean island basalts (OIB). This, together with their positive εNdi values (4·3–4·8), is consistent with derivation from an enriched asthenospheric mantle source. Clinopyroxenes in the wehrlites display convex-upward chondrite-normalized REE patterns. The melts in equilibrium with these clinopyroxenes have very similar trace element compositions to those of the crosscutting dykes, suggesting a similar mantle source shared by the Xiaohaizi wehrlite intrusion and dykes. The Xiaohaizi wehrlite intrusion is characterized by Sr–Nd isotopic disequilibrium between clinopyroxene and plagioclase separates: 87Sr/86Sri (0·7038–0·7041) and εNdi (1·0–1·9) of clinopyroxene are lower and higher than the respective ratios of intercumulus plagioclase (87Sr/86Sri = 0·7042–0·7043, εNdi = 0·4–1·0). The 87Sr/86Sri and εNdi of clinopyroxene separates correlate positively and negatively with Zr/Nb, respectively, implying variable degrees of crustal contamination during the formation of the Xiaohaizi wehrlite intrusion. 87Sr/86Sri increases and εNdi decreases with increasing Ca content of plagioclase, indicating that higher An plagioclases experienced higher degrees of contamination. This can be explained by assimilation of continental crust through a turbulent magma ascent (ATA) process. However, this ATA model fails to account for the positive correlation between the Mg# and εNdi of clinopyroxene separates. The isotopic disequilibrium in the Xiaohaizi LMI is more probably generated during an assimilation and fractional crystallization process involving Archean–Neoproterozoic basement and carbonates as contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.