Abstract

A Late Cretaceous lamprophyre dyke in the Villány Mts (S Hungary), situated in the Tisza unit, contains abundant spinel lherzolite xenoliths with porphyroclastic textures. Mineral chemistry suggests a relatively fertile mantle, which experienced only 5–7% melt extraction. Differences in porphyroclast and neoblast chemistry and thermobarometric calculations suggest that the mantle section represented by the xenoliths experienced recrystallization at lower PT as it was transported to shallow mantle depths close to the plagioclase stability field, followed by later relaxation. Based on volcanological and sedimentological constraints from the Villány Mts and the neighboring Mecsek Mts, we suggest that the uprise of the subcontinental mantle material was related to a Cretaceous rifting event and lithospheric deformation of the southwestern part of the Tisza unit. Mantle upwelling and formation of lamprophyre melts can be related to generation or reactivation of deep fractures of the lithosphere, during a period of lithospheric extension between the major nappe emplacements (Albian–Cenomanian and Paleocene) of the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call