Abstract

The diamondiferous Letlhakane kimberlites are intruded into the Proterozoic Magondi Belt of Botswana. Given the general correlation of diamondiferous kimberlites with Archaean cratons, the apparent tectonic setting of these kimberlites is somewhat anomalous. Xenoliths in kimberlite diatremes provide a window into the underlying crust and upper mantle and, with the aid of detailed petrological and geochemical study, can help unravel problems of tectonic setting. To provide relevant data on the deep mantle under eastern Botswana we have studied peridotite xenoliths from the Letlhakane kimberlites. The mantle-derived xenolith suite at Letlhakane includes peridotites, pyroxenites, eclogites, megacrysts, MARID and glimmerite xenoliths. Peridotite xenoliths are represented by garnet-bearing harzburgites and lherzolites as well as spinel-bearing lherzolite xenoliths. Most peridotites are coarse, but some are intensely deformed. Both garnet harzburgites and garnet lherzolites are in many cases variably metasomatised and show the introduction of metasomatic phlogopite, clinopyroxene and ilmenite. The petrography and mineral chemistry of these xenoliths are comparable to that of peridotite xenoliths from the Kaapvaal craton. Calculated temperature-depth relations show a well-developed correlation between the textures of xenoliths and P-T conditions, with the highest temperatures and pressures calculated for the deformed xenoliths. This is comparable to xenoliths from the Kaapvaal craton. However, the P-T gap evident between low-T coarse peridotites and high-T deformed peridotites from the Kaapvaal craton is not seen in the Letlhakane xenoliths. The P-T data indicate the presence of lithospheric mantle beneath Letlhakane, which is at least 150 km thick and which had a 40mW/m2 continental geotherm at the time of pipe emplacement. The peridotite xenoliths were in internal Nd isotopic equilibrium at the time of pipe emplacement but a lherzolite xenolith with a relatively low calculated temperature of equilibration shows evidence for remnant isotopic disequilibrium. Both harzburgite and lherzolite xenoliths bear trace element and isotopic signatures of variously enriched mantle (low Sm/Nd, high Rb/Sr), stabilised in subcontinental lithosphere since the Archaean. It is therefore apparent that the Letlhakane kimberlites are underlain by old, cold and very thick lithosphere, probably related to the Zimbabwe craton. The eastern extremity of the Proterozoic Magondi Belt into which the kimberlites intrude is interpreted as a superficial feature not rooted in the mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.