Abstract

Having knowledge of a terrestrial planet’s chemistry is fundamental to understanding the origin and composition of its rocks. Until recently, however, the geochemistry of Mercury—the Solar System’s innermost planet—was largely unconstrained. Without the availability of geological specimens from Mercury, studying the planet’s surface and bulk composition relies on remote sensing techniques. Moreover, Mercury’s proximity to the Sun makes it difficult to study with Earth/space-based telescopes, or with planetary probes. Indeed, to date, only NASA’s Mariner 10 and MESSENGER missions have visited Mercury. The former made three “flyby” encounters of Mercury between 1974 and 1975, but did not carry any instrument to make geochemical or mineralogical measurements of the surface. Until the MESSENGER flyby and orbital campaigns (2008–2015), therefore, knowledge of Mercury’s chemical composition was severely limited and consisted of only a few facts. For example, it has long been known that Mercury has the highest uncompressed density (i.e., density with the effect of gravity removed) of all the terrestrial planets, and thus a disproportionately large Fe core. In addition, Earth-based spectral reflectance observations indicated a dark surface, largely devoid of Fe within silicate minerals. To improve understanding of Mercury’s geochemistry, the MESSENGER scientific payload included a suite of geochemical sensing instruments: in particular, an X-Ray spectrometer and a gamma-ray and neutron spectrometer. The datasets obtained from these instruments (as well as from other complementary instruments) during MESSENGER’s 3.5-year orbital mission allow a much more complete picture of Mercury’s geochemistry to be drawn, and quantitative abundance estimates for several major rock-forming elements in Mercury’s crust are now available. Overall, the MESSENGER data reveal a surface that is rich in Mg, but poor in Al and Ca, compared with typical terrestrial and lunar crustal materials. Mercury’s surface also contains high concentrations of the volatile elements Na, S, K, and Cl. Furthermore, the total surface Fe abundance is now known to be <2 wt%, and the planet’s low-reflectance is thought to be primarily caused by the presence of C (in the form of graphite) at a level of >1 wt%. Such data are key to constraining models of Mercury’s formation and early evolution. Large-scale spatial variations in the MESSENGER geochemical datasets have also led to the designation of several geochemical “terranes,” which do not always align with otherwise mapped geological regions. Based on the MESSENGER geochemical results, petrological experiments and calculations have been, and continue to be, performed to study Mercury’s surface mineralogy and petrology. The results show that there are likely to be substantial differences in the precise mineral compositions and abundances amongst the different terranes, but Mercury’s surface appears to be dominated by Mg-rich olivine and pyroxene, as well as plagioclase and sulfide phases. Depending on the classification scheme used, Mercury’s ultramafic surface rocks can thus be described as similar in nature to terrestrial boninites, andesites, norites, or gabbros.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call