Abstract

The Lanterman Fault Zone, a major terrane boundary in northern Victoria Land, displays a polyphase structural evolution. After west-over-east thrusting, it experienced sinistral strike-slip shearing. Sheared metabasites from the Wilson Terrane (inboard terrane) preserve a record of retrograde metamorphic evolution. Shearing took place under amphibolite-facies metamorphic conditions (roughly comparable to those reached during regional metamorphism) which later evolved to greenschist-facies conditions. In contrast, the Bowers Terrane (outboard terrane) preserves a prograde metamorphic evolution which developed from greenschist-facies to amphibolite-facies metamorphism during shearing, followed by greenschist-facies metamorphism during the late deformational stages. Laser step-heating 40Ar–39Ar analyses of syn-shear amphibolite-facies amphiboles yielded ages of 480–460 Ma, in agreement with a ∼480-Ma age obtained from a biotite aligned along the mylonitic foliation. These ages are younger than those (∼492 to ∼495 Ma) obtained from pre-shear amphibole relics linked to regional metamorphism of the Wilson Terrane. Results attribute the structural and metamorphic reworking during shearing to the late stages of the Cambrian-Ordovician Ross Orogeny and to the Middle-Late Ordovician probably in relation to the beginning of deformation in the Lachlan Orogen, thus precluding any appreciable impact of the Devonian-Carboniferous Borchgrevink event in the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call