Abstract

Ultrasonic compressional wave velocities (Vp) and shear wave velocities (Vs) were measured with varying pressure up to 1.0 GPa in a temperature range from 25 to 400 °C for a suite of tonalitic–gabbroic rocks of the Miocene Tanzawa plutonic complex, central Japan, which has been interpreted as uplifted and exposed deep crust of the northern Izu–Bonin–Mariana (IBM) arc. The Vp values of the tonalitic–gabbroic rocks increase rapidly at low pressures from 0.1 to 0.4 GPa, and then become nearly constant at higher pressures above 0.4 GPa. The Vp values at 1.0 GPa and 25 °C are 6.3–6.6 km/s for tonalites (56.4–71.1 wt.% SiO 2), 6.8 km/s for a quartz gabbro (53.8 wt.% SiO 2), and 7.1–7.3 km/s for a hornblende gabbro (43.2–47.7 wt.% SiO 2). Combining the present data with the P wave velocity profile of the northern IBM arc, we infer that 6-km-thick tonalitic crust exists at mid-crustal depth (6.1–6.3 km/s Vp) overlying 2-km-thick hornblende gabbroic crust (6.8 km/s Vp). Our model shows large differences in acoustic impedance between the tonalite and hornblende gabbro layers, being consistent with the strong reflector observed at 12-km-depth in the IBM arc. The measured Vp of Tanzawa hornblende-bearing gabbroic rocks (7.1–7.3 km/s) is significantly lower than that Vp modeled for the lowermost crustal layer of the northern IBM arc (7.3–7.7 km/s at 15–22 km depth). We propose that the IBM arc consists of a thick tonalitic middle crust and a mafic lower crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.