Abstract

This study discusses the geochemical features of the Early-Middle Miocene and Pliocene basaltic (SiO2 = ~46–52; MgO = ~6–10 wt%) to andesitic (SiO2 = ~59; MgO = ~4 wt%) rocks exposed in the Gürün and Kangal basins (Sivas, eastern part of central Anatolia), respectively. The basaltic rocks are characterized by alkaline to tholeiitic affinities, while the more evolved andesitic samples show calc-alkaline affinity. Trace element variations reveal that they can be evaluated in three sub-groups, each represented by different contents of trace elements for given Nb contents. Primary magmas of each groups were likely produced by different degrees of partial melting (~1–2, 2–3, 7–10% respectively) from a common mantle source, subsequently underwent different degrees of fractionation and crustal contamination. Derivation from a common mantle source of the primitive magmas of each group is supported by similar Sr, Nd and Pb isotopic ratios. Increasing degrees of partial melting seem to be responsible for the alkaline to tholeiitic variation among the basaltic samples, while higher degrees of crustal contamination (AFC) resulted in calc-alkaline affinity of the more evolved samples.Most primitive Pliocene samples show intra-plate (anorogenic) geochemical features, while the more evolved Miocene calc-alkaline samples resemble geochemically subduction-related (orogenic) magmatic rocks. However, on the basis of detailed geochemical models, we propose that the calc-alkaline affinity among the Miocene samples can also be gained by crustal contamination of their primary magmas which were also anorogenic in character. If this is true, overall, the Miocene and Pliocene basaltic to andesitic rocks in the Gürün and Kangal basins appear to may have formed by variable degrees of partial melting of a common anorogenic mantle that had not been subject to subduction-related metasomatism. This is an alternative approach to the general view assuming the Early-Middle Miocene magmatic activity in the region was derived from subduction-modified mantle sources in response to subduction of the Arabian Plate under the Anatolian Plate. This hypothesis further implies that either delamination of the sub-continental lithosphere or slab break-off processes beneath the central to eastern Anatolia might took place well before the Miocene, thus allowing upwelling unaltered mantle to provide the source of the Miocene to Pliocene volcanic rocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call