Abstract

Abstract The porosity and permeability of sandstone and carbonate reservoirs (known as reservoir quality) are essential inputs for successful oil and gas resource exploration and exploitation. This chapter introduces basic concepts, analytical and modelling techniques and some of the key controversies to be discussed in 20 research papers that were initially presented at a Geological Society conference in 2014 titled ‘Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction’. Reservoir quality in both sandstones and carbonates is studied using a wide range of techniques: log analysis and petrophysical core analysis, core description, routine petrographic tools and, ideally, less routine techniques such as stable isotope analysis, fluid inclusion analysis and other geochemical approaches. Sandstone and carbonate reservoirs both benefit from the study of modern analogues to constrain the primary character of sediment before they become a hydrocarbon reservoir. Prediction of sandstone and carbonate reservoir properties also benefits from running constrained experiments to simulate diagenetic processes during burial, compaction and heating. There are many common controls on sandstone and carbonate reservoir quality, including environment of deposition, rate of deposition and rate and magnitude of sea-level change, and many eogenetic processes. Compactional and mesogenetic processes tend to affect sandstone and carbonate somewhat differently but are both influenced by rate of burial, and the thermal and pressure history of a basin. Key differences in sandstone and carbonate reservoir quality include the specific influence of stratigraphic age on seawater composition (calcite v. aragonite oceans), the greater role of compaction in sandstones and the greater reactivity and geochemical openness of carbonate systems. Some of the key controversies in sandstone and carbonate reservoir quality focus on the role of petroleum emplacement on diagenesis and porosity loss, the role of effective stress in chemical compaction (pressure solution) and the degree of geochemical openness of reservoirs during diagenesis and cementation. This collection of papers contains case study-based examples of sandstone and carbonate reservoir quality prediction as well as modern analogue, outcrop analogue, modelling and advanced analytical approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.