Abstract

Crude oil spills as a result of natural disasters or extraction and transportation operations are common nowadays. Oil spills have adverse effects on both aquatic and terrestrial ecosystems and pose a threat to human health. This study have been concerned with studying the capability of six fungal species (Curvularia brachyspora, Penicillium chrysogenum, Scopulariopsis brevicaulis, Cladosporium sphaerospermum, Alternaria alternata, and Stemphylium botryosum) and three fungal consortia (FC), FC1 (P. chrysogenum and C. brachyspora), FC2 (S. brevicaulis and S. botryosum), and FC3 (S. brevicaulis, S. botryosum, and C. sphaerospermum), to remediate petroleum hydrocarbons (PHs). Qualitative and quantitative changes in polyaromatic hydrocarbons (PAHs) and saturated hydrocarbons (SH) mixtures and the patterns of PHs degradation have been examined using HPLC and GC. Studying the GC chromatogram of C. sphaerospermum revealed severe degradation of SHs exhibited by this species, and the normal-paraffin and isoparaffin degradation percentage have been valued 97.19% and 98.88%, respectively. A. alternata has shown the highest significant (at P ˂ 0.05) PAH degradation percent reaching 72.07%; followed by P. chrysogenum, 59.51%. HPLC data have revealed that high-molecular-weight PAH percent/total PAHs decreased significantly from 98.94% in control samples to 68.78% in samples treated with A. alternata. FC1 and FC2 consortia have exhibited the highest significant PH deterioration abilities than did the individual isolates, indicating that these fungal consortia exhibited positive synergistic effects. The study supports the critical idea of the potential PAH and SH biodegradation as a more ecologically acceptable alternative to their chemical degradation.

Highlights

  • Environment contamination with petroleum hydrocarbons (PHs) has occurred since ancient time naturally, but in the latest years, man-made oil spills have become common [1]

  • Screening of fungi on solidified Czapeks Dox medium supplemented with PHs as a sole carbon source showed quite a few fungi colonies that have been able to change the appearance of the petrol surrounding them (Figure 2)

  • Normal-Carbon14 (n-C14) has been found to be the initial carbon number in control samples, while in the samples treated with fungal cultures, for 30 days, n-C17 has been found to be the initial carbon number, except S. botryosum and S. brevicaulis, indicating that all the used fungal strains have succeeded in completely removing n-C14 and n-C15

Read more

Summary

Introduction

Environment contamination with petroleum hydrocarbons (PHs) has occurred since ancient time naturally, but in the latest years, man-made oil spills have become common [1]. Even though physical and chemical processes, such as dilution, dispersion, sorption, abiotic transformations, and volatilization, are important means of crude oil removal, bioremediation treatment is the main promising mechanism for pollutants cleanup [3,4,5]. E commonly used chemical method for PHs remediation is the application of compounds such as cleaners, dispersants, biosurfactants, demulsifiers, and soil oxidizers, but due to their high cost and potential for causing secondary pollution as well as the toxicity of these chemicals to various ecosystems, there are widespread concerns about their applications [6]. Using natural microorganism populations in bioremediation processes is the utmost acceptable mechanism by which several xenobiotic contaminants, including PHs, have been removed from the environment [7]. Crude oil contains varied chemical compounds including asphaltic compounds, heterocyclic, normal alkanes, cyclo- and isoalkanes, aromatics, and polycyclic aromatics. ese compounds have a dissimilar degradation rate in the environment. e biodegradation potential was governed with the chemical structure of each compound, but further factors such as toxicity, volubility, and interaction with other molecules affect the extent and the rate of biodegradation [10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call