Abstract

The analysis of crude oil is a challenging task due to sample complexity. In mass spectrometry, several ionization techniques can be used to perform this task. Herein, we report the use of an atmospheric pressure low-temperature plasma (LTP) probe to desorb and ionize compounds of petroleum crude oil from different sources and residual fuel oil standard reference materials (SRMs). LTP is used to perform rapid screening of low molecular weight and relatively volatile components enabling characterization and differentiation of crude oil samples relying solely on mass spectrometric data. Crude oil samples were analyzed without sample preparation or dilution directly from sampling surfaces of different materials such as polytetrafluorethylene, glass and polyethylene. Analyses were performed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) with high mass accuracy and high resolving power of 400,000 at m/z 400 to estimate the elemental composition of the ions produced by LTP. Principal components analysis (PCA) was performed on the LTP data for statistical analysis. LTP was found to generate positive ions of lower mass compounds of low to moderate polarity. Three-dimensional PCA plots efficiently differentiated between SRMs and Azerbaijan crude oil samples. Standards of alkanes, nitrogen heterocycles, sulfur heterocycles, hydrocarbon polycyclic aromatics and saturated acids were investigated for their behavior in LTP ionization. Alkanes were found to form oxidized products to some extent. The LTP probe worked particularly well in the characterization of sulfur compounds. LTP ionization of crude oils was found to advantageously complement analysis by electrospray ionization. The LTP probe in combination with miniaturized mass spectrometers has the potential to provide direct composition analysis and source identification of crude oil contaminations in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.