Abstract

Soil is an environmental matrix that carries life for all living things. With the rise of human activities and the acceleration of population, the soil has been exposed in part to pollution by the discharge of various xenobiotics and persistent pollutants into it. The disposal of toxic substances such as polycyclic aromatic hydrocarbons (PAHs) alters soil properties, affects microbial biodiversity, and damages objects. Considering the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and clean-up of PAH-polluted sites represents an important technological and environmental challenge for sustainable growth and development. Though several treatment methods to remediate PAH-polluted soils exist, interesting bacteria, fungi, and their enzymes receive considerable attention. The aim of the present review is to discuss PAHs' impact on soil properties. Also, this review illustrates physicochemical and biological remediation strategies for treating PAH-contaminated soil. The degradation pathways and contributing factors of microbial PAH-degradation are elucidated. This review also assesses the use of conventional microbial remediation compared to the application of genetically engineered microorganisms (GEM) that can provide a cost-effective and eco-friendly PAH-bioremediation strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call