Abstract

Vast marble deposits occur in a cover sequence of the Menderes Massif, SW Turkey. Four major marble deposits are recognized in Muğla province based on the stratigraphic levels. These are Permo-Carboniferous aged black marbles (1), Triassic aged marbles (2), Upper Cretaceous aged marbles (3), and Paleocene aged pelagic marbles (4). This study deals with Triassic aged marbles of the southern part of the Menderes Massif. The Triassic marbles from SW Turkey consist of two big marble horizons in the Çayboyu (ÇM) and Kestanecik (KM) regions. The characteristic samples are collected from different stratigraphic levels in marble deposits in the ÇM and KM horizons. Mineralogical and major, trace, and rare earth element (REE) analyses of marble, limestone, and schist were conducted on these samples to reveal their petrographical and geochemical characteristics. The ÇM horizon is represented by calcitic marble layers. Nickel, cobalt, manganese, and iron elements filled in fractures, fissures, and intergranular spaces of calcite crystals and these elements give the pinky colour to the marble from the ÇM horizon. KM marbles were deformed, metamorphosed, and recrystallized under greenschist facies P–T conditions. As a result of the metasomatic reaction of magnesium and manganese rich fluids with marbles, dolomite, and manganese, minerals such as rhodochrosite and pyrolusite have crystallized along vein walls and layers in the KM horizon. Dolomitization was determined in KM marbles, whereas ÇM marbles show the character of limestone. MgO, MnO, Fe 2O 3, Ni, and Zn contents of marbles from the KM horizon are higher than those of ÇM marbles due to metasomatic reactions. The Sr content in white coloured marbles ranges between 11.20 ppm and 112.20 ppm and this concentration reaches up to 272.70 ppm due to metasomatic reactions and fluid intake. The REE content of Triassic marbles is independent of the abundance of carbonate and the REE enrichment observed due to syn-metamorphic fluid flow. The significant negative Eu anomaly in REE patterns indicates that the protoliths of Triassic marbles are carbonate rocks of sedimentary origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call