Abstract
Alluvial placer gold deposits that accumulate in streams across the globe are essentially allochthonous sedimentary deposits that are transported from their source to their location of deposition. The purpose of this study was to find placer gold deposits in alluvial sediments along the Indus River in the NW Himalaya of Pakistan. The investigated region was divided into five clusters based on river morphology. The research focused on mineralogical distribution, sediment source, gold transport distance, elemental composition, and gold concentration in river sediments. Throughout, during the deposition at point and channel bars, the mixed source of alluvial sediments was revealed by its mineralogical composition. However, the SEM analysis demonstrated that the gold grains had a high flatness index, indicating that they had been transported a significant distance. The elemental composition of several samples revealed a significant concentration of silicon dioxide, iron oxide, and alumina oxide transported from the Himalaya. The study of the trace elements indicated gold and related base metals with granitic provenance were transported from an acidic/granitic source. Based on gold concentration, it is demonstrated that the left riverbank (clusters C1, C2, and C3) has a higher concentration of gold deposits and higher potential for economic gold exploration than the right bank (clusters C4 and C5) due to the lower velocity of running water in the study area. The findings revealed that the studied area has good potential for commercial exploration of gold resources, and the workflow can be adopted in any region with a similar geological setting and morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.