Abstract
Previous studies on propagating rifts suggested that segmentation of a spreading axis could represent the superficial mark of mantle behavior (Sinton et al., 1983; Nicolas, 1989; Gente et al., 1995). The study of North–South Propagating Spreading Center (NSPSC) from the North Fiji Basin (NFB) brings new insights to this debate. Basalts from the central part of the propagator have more variable incompatible and isotopic ratios then those from its northern tip. A model of dynamic partial melting of a thermally and slightly geochemically and isotopically heterogeneous mantle is proposed. Beneath the central segment, the partial fusion starts deeper (ca. 30 km) and reaches a higher rate (ca. 22%). Further open system differentiation occurs within shallow permanent magma reservoirs along most of the central segment. Below the segment closest to the tip of the propagator the partial fusion starts shallower (ca. 25 km) and stays at a lower rate (ca. 16%). The maximum of differentiation occurs close to the propagator, in small, periodically disconnected, magma bodies resulting in the production of ferrobasalts close to the tip. In order to explain these variations, the presence of an asthenospheric diapir focused beneath the central part of the NS-PSC is proposed. The petrogenetic processes of propagating spreading centers of mature oceanic basins or back-arc basins are identical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.