Abstract

Igneous charnockites share some of the characteristics of calc-alkaline and alkali (A-type) granites, and together constitute important rock types in many high-grade terrains. The Neoproterozoic Kalpatta and Munnar biotite-hornblende granites intrude the upper-amphibolite to granulite-facies terrain of southwestern India. Geochemical characteristics of the Kalpatta granite are similar to high-K calc-alkaline magnesian granitoids, whereas those of the Munnar granite are similar to alkali ferroan granitoids. Within the constraints imposed by the high temperature, K-rich nature of the magmas, comparison with experimental studies on various granitoid source compositions, and trace- and rare-earth-element modeling, the distinctive features of both granites reflect a source rock of charnockitic nature. In this context, the northern Kerala (NKM) and Cardamom hill (CM) charnockite massifs, occurring near the granites, were considered as probable source rock compositions. Both the NKM and CM charnockites consists of an intermediate (low SiO 2) type and silicic (high SiO 2) type, with the intermediate type showing similarities to high-Ba–Sr granitoids with low K 2O/Na 2O ratios and the silicic type showing similarities to high-Ba–Sr granitoids with high K 2O/Na 2O ratios. The proposed petrogenetic model involves partial melting of the intermediate NKM charnockite forming the Kalpatta calc-alkaline granite. In contrast, the Munnar alkali (A-type) granite was the product of melting, followed by fractional crystallization of the intermediate CM charnockite. It is suggested that granitoids that formed by melting of intermediate type charnockites show high-K calc-alkaline magnesian geochemical characteristics, whereas those formed by intermediate type charnockite melting-fractional crystallization show alkali ferroan geochemical characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.