Abstract

The Ngondo complex is a late-collisional pluton, which was emplaced around 600 Ma along a N030° E strike-slip shear zone in the southwestern part of the Neoproterozoic Fold Belt of Cameroon. It comprises three successively emplaced plutonic groups of rocks: (i) mafic to felsic intrusive rocks (MFR), (ii) fine-grained granites (FGG) and (iii) coarse-grained granites (CGG). Late aplitic and pegmatite dykes were emplaced along brittle fractures in these plutons. The complex is metaluminous to weakly peraluminous, high-K, calc-alkaline to “ trans-alkaline” ferro-potassic, with mineralogical and geochemical characteristic of I-type granites. The plutonic rocks are characterised by high Ba, Sr, Rb and ∑REE concentrations and low Ni and Cr contents in the mafic members. They also display chondrite-normalised REE patterns characterised by variable LREE enrichment, moderate to minor HREE fractionation with moderate to pronounced negative Eu anomalies (Eu/Eu∗: 0.6–0.9 (MFR), 0.2–0.5 (FGG), 0.3–0.7 (CGG)). Trace element distribution patterns for the three plutonic groups are similar with a distinctive depletion in Nb, Sr and Ti relative to other trace elements and a greater enrichment in LILE compared to HFSE. These plutonic groups present distinct evolutionary trends precluding their origin from differentiation of a single parental magma. The geochemical and isotopic data indicate that they derived from partial melting of heterogeneous (meta)-igneous mafic lower crustal materials, having possibly the composition of amphibolitised high-K calc-alkaline basaltic andesites and andesitic metagreywackes. Petrographic evidences such as the presence of quartz-ocelli, xenocrysts of feldspar, fragments of country rocks (migmatitic gneisses) strongly indicate that crustal contamination may have played an important role in the genesis of the plutonic rocks. This contamination process is further supported by the variation of major and trace elements together with Sr–Nd isotopic data. The Sr–Nd isotopic compositions and the T DM model ages (3.2 Ga and 2.1–1.3 Ga) strongly support the involvement of an older continental crust during the genesis of the magmas, with little or no addition of mantle-derived magma to the crust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call