Abstract

A petrogenetic model for the Merensky Reef in the Rustenburg section of the Bushveld Complex has been developed based on detailed field and petrographic observations and electron microprobe data. The model maintains that the reef formed by reaction of hydrous melt and a partially molten cumulate assemblage. The model is devised to account for several key observations: (1) Although the dominant rock type in the Rusterburg sections is pegmatoidal feldspathic pyroxenite, there is a continous range of reef lithology from pyroxenite to pegmatoidal harzburgite and dunite, and small amounts of olivine are present in nearly all pegmatoids. (2) The pegmatoid is usually bounded above and below by chromitite seams and the basal chromitite separated from underlying norite by a centimeter-thick layer of anorthosite. The thicknesses of the two layers exhibit a well-defined, positive correlation. (3) Inclusion of pyroxenite identical to the hanging wall and of leuconorite identical to the footwall are present in the pegmatoid. The leuconorite inclusions are surrounded by thin anorthosite and chromitite layers in the same sequence as that at the base of the reef. (4) Chromite in seams adjacent to plagioclase-rich rocks is characterized by higher Mg/Mg+Fe and Al/R3 and lower Cr/R3 than that in seams adjacent to pyroxene-rich rocks. Similar variations in mineral compositions are observed across individual chromitite seams where the underlying and overlying rock types differ. The chromite compositional variations cannot be rationalized in terms of either fractional crystallization or reequilibration with surrounding silicates. It is proposed that the present reef was originally a melt-rich horizon in norite immediately overlain by relatively crystallized pyroxenite. Magmatic vapor generated by crystallization of intercumulus melt migrated upward through fractures in the cumulate pile below the protoreef. The melt-rich protoreef became hydrated because fractures were unable to propagate through it and because the melt itself was water-undersaturated. Hydration of the intercumulus melt was accompanied by melting, and the hydration/melting front migrated downward into the footwall and upward into the hanging wall. In the footwall melting resulted first in the dissolution of orthopyroxene and then of plagioclase. With continued hydration chromite was stabilized as melt alumina content increased. The regular variations in chromite compositions reflect the original gradients in melt composition at the hydration front. The stratigraphic sequence downward through the base of the reef or pegmatoid (melt)-chromitite-anorthosite-norite represents the sequence of stable mineral assemblages across the hydration/melting front. The sequence is shown to be consistent with knowledge gained from experiments on melting of hydrous mafic systems at crustal pressures. With cooling the hydrated mixture from partial melting of norite footwall and more mafic hanging wall crystallized in the sequence chromite-olivine-pyroxene-plagioclase, with peritectic loss of some olivine. Calculations of mass balance indicate that a significant proportion of the melt was lost from the melt-rich horizon. Variations in the development of the pegmatoid and associated lithologies and amount of modal olivine in the pegmatoids along the strike of the Merensky Reef resulted because the processes of hydration, melting and melt loss operated to varying extents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call