Abstract
Late Jurassic NE-trending A-type granitoids are widespread in the Shihang belt, South China, though their petrogenesis and geodynamic settings remain controversial. The Guiping complex is located on the southwest margin of the Shihang belt. In this study, the petrography, major and trace element geochemistry, whole-rock Sr-Nd isotopes, and zircon U-Pb geochronology of the Guiping complex were investigated. The Guiping complex is composed of the Fenghuangling and Xishan plutons; both plutons yielded zircon U-Pb ages of ca. 160 Ma. The Fenghuangling pluton has low SiO2 content of 54.26% to 60.31%, whereas the Xishan pluton exhibits high SiO2 content of 65.19% to 71.18%. Both of them are metaluminous and belong to the high-K calc-alkaline series and are enriched in large-ion lithophile elements (LILEs) such as Rb, Th, U, and Pb. The Fenghuangling and Xishan plutons showed enrichment in light rare earth elements (LREEs) and high-field strength elements (Nb, Ta, Zr, and Hf) and depletion in heavy rare earth elements (HREEs). Marked Nb and Ta negative anomalies were not observed. Due to the high contents of Zr + Ce + Nb + Y and high Ga/Al ratios, all the samples belonged to the group of A-type granites. The Fenghuangling and Xishan plutons had low ISr (mainly in the range of 0.7046–0.7058) and high εNd(t) (−0.60 to 1.94) values, though obviously different from those of the Precambrian basement in South China. Furthermore, they lie between the ocean island basalt (OIB) of the asthenosphere and the arc basaltic rocks of the enriched lithospheric mantle. Therefore, we proposed that the basaltic parental magma of the Guiping complex originated from partial melting of the enriched lithospheric mantle, which was metasomatized by asthenosphere-related OIB-type basaltic magma. Mafic microgranular enclaves in the Xishan pluton displayed positive Nb and Ta anomalies, which is consistent with OIB-type basalts. The enclaves also had similar Sr-Nd isotopic compositions to the Xishan pluton. That indicated that the enclaves were probably formed by mixing of the OIB-type basaltic magma and the Xishan pluton. In conclusion, the formation of the Late Jurassic NE-trending A-type granite belt was attributed to back-arc extension as a result of the rollback of the Paleo-Pacific Plate.
Highlights
Granitoids are widespread in South China and have received significant attention from researchers
An NEtrending A-type granite belt has been gradually delineated in the southwest of the Shihang belt, which is closely related to the Jurassic W-Sn mineralization [19,20,21,22,23,24,25,26,27]
Zircon U-Pb dating indicates that the Guiping complex was formed at ca. 160.8 ± 0.9 Ma~159.1 ± 1.1 Ma
Summary
Granitoids are widespread in South China and have received significant attention from researchers. Gilder et al (1996) [18] identified a granite belt with a relatively young Nd model age (
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.