Abstract

The Baishaziling greisen-type tin deposit is located in the Dayishan ore field, Nanling Range, Southern China. In this study, for the first time, we present both zircon and cassiterite UPb dating, whole-rock elements, zircon LuHf and apatite Nd isotopic compositions to better constrain the petrogenesis of granite and its genetic link with Sn mineralization. Zircon UPb ages of fine-grained granite and coarse-grained granite are 154 ± 1.8 Ma and 153 ± 2.1 Ma, respectively, which are consistent with the cassiterite UPb dating of 154 ± 5.4 Ma, implying genetic relationship between the Baishaziling granite and tin metallogenesis. The Baishaziling granites exhibit high SiO2, K2O + Na2O, Zr + Nb + Ce + Y contents, low P2O5 and Sr contents, and high ratios of Ga/Al, TFeO/(TFeO + MgO), implying A-type granite affinity with characteristics of high-K calc-alkaline and weakly peraluminous. The zircon εHf(t) values and apatite εNd(t) values of the granite vary from −4.46 to −1.81 and −8.37 to −7.10, with two-stage Hf and Nd model ages of 1.40 to 1.50 Ga and 1.52 to 1.64 Ga, indicating that they were generated by the partial melt of the Proterozoic basement with the involvement of mantle magma. In addition, formation of Dayishan granite was likely associated with an intraplate extensional setting caused by the subduction of the Palaeo-Pacific plate. The Baishaziling reduced granites have high stannum and boron contents, which are in favor of the tin mineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call