Abstract

Recently, many Mo deposits genetically related to emplacement of Early Cretaceous granites have been found in the Dabie–Qinling belt. A typical intrusion that combines magmatism and metallogenesis, the Bao'anzhai granite, yields a zircon 238U–206Pb age of 123.2 ± 1.1 Ma and a molybdenite Re–Os isochron age of 122.5 ± 2.7 Ma. This granite is characterized by high silica and alkali, but low Mg, Fe, and Ca. It is enriched with light rare earth elements (REEs) and large-ion lithophile elements (LILEs, Rb, K, Th, U) but depleted of heavy REEs, high field strength elements (HFSEs, Nb, Ta, Ti, and Y), and Sr. This high-K granite has medium initial 87Sr/86Sr ratios (0.706518–0.707116) and low initial Pb isotopic ratios [(206Pb/204Pb)i, 16.423–16.699; (207Pb/204Pb)i, 15.285–15.345; (208Pb/204Pb)i, 37.335–37.633], and is characterized by low ϵNd(t) and ϵHf(t) values (−14.92 to −14.22 and −21.67 to −19.19, respectively). These data indicate that this pluton is a high-K calc-alkaline fractionated I-type granitite. It was generated by partial melting of the Yangtze lower crust, which is probably similar to Neoproterozoic TTG-like magmatic rocks at the north Yangtze Block under a non-thickened lower crust environment (<35 km). The ores also have low radiogenic Pb isotopes (206Pb/204Pb, 16.592–17.674; 207Pb/204Pb, 15.300–15.476; 208Pb/204Pb, 37.419–37.911) and low Re content in molybdenite (5.693–10.970 ppm), suggesting a crustal magmatic source for the metallogenic minerals in the Mo deposit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call