Abstract

During convergence of Gondwana-derived microplates and Laurussia in the Palaeozoic, subduction of oceanic and continental crusts and their sedimentary cover introduced material of regionally contrasting chemical and isotopic compositions into the mantle. This slab material metasomatised the local mantle, producing a highly heterogeneous lithospheric mantle beneath the European Variscides. The eastern termination of the European Variscides (Moldanubian and Saxo-Thuringian zones of Austria, Czech Republic, Germany and Poland) is unusual in that the mantle was modified by material from several subduction zones within a small area. Orogenic lamproites sampled this lithospheric mantle, which has a chemical signature reflecting extreme depletion (low CaO and Al2O3 contents and high Mg-number) followed by strong metasomatic enrichment, giving rise to crust-like trace element patterns, variable radiogenic 87Sr/86Sr(330) (0.7062–0.7127) and non-radiogenic Nd isotopic compositions (εNd(330)=−2.8 to −7.8), crustal Pb isotopic compositions, and a wide range of δ7Li values (−5.1 to +5.1). This metasomatic signature is variably expressed in the lamproites, depending on the extent of melting and the nature of the source of the metasomatic component. Preferential melting of the metasomatically enriched (veined) lithospheric mantle with K-rich amphibole resulted in lamproitic melts with very negative, crust-like δ7Li values, which correlate positively with peralkalinity, HFSE contents and lower εNd. Both the higher degree of melting and progressive consumption of the metasomatic component reduce the chemical and isotopic imprints of the metasomatic end member. The very positive δ7Li values of some lamproites indicate that the source of these lamproites may have been modified by subducted oceanic lithosphere. Fresh olivine from the Brloh (Moldanubian) lamproitic dyke shows very high Fo (up to 94%) and very high Li contents (up to 25ppm), demonstrating that the extremely depleted and later enriched lithospheric mantle may have contributed significantly to the Li budget of the lamproites. The regional distribution of lamproites with contrasting chemical and isotopic fingerprints mimics the distribution of the different Variscan subduction zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.