Abstract

The origin of anorthosite and associated igneous gabbronorite and ferrodiorite was investigated through detailed study of a typical massif-type anorthosite complex from Gruber, Central Dronning Maud Land, East Antarctica. Field observations showed that the Gruber Complex is made up of gabbronorite-anorthosite pluton which was intruded by ferrodiorite dykes. Systematic samples collected from the Gruber Complex revealed significant geochemical variations within the region. Four rock types have been identified, based on modal proportions of mineral phases and their geochemistry data. Clinopyroxene-gabbronorite and plagioclase-gabbronorite are the two types of gabbronorite with the dominance of clinopyroxene and plagioclase, respectively. Anorthosite is represented by rocks having predominance of plagioclase with minor clinopyroxene. Ferrodiorite is characterized by modal abundance of orthopyroxene and Fe-Ti oxide. Major and trace element systematics showed that all the four rock types are co-magmatic and are related through fractional crystallization. Based on this study, it is reported that clinopyroxene was the first phase to crystallize followed by plagioclase and then Fe-Ti oxides. Furthermore, trace element composition of the parental melt was calculated using LA-ICPMS analysis of the most primitive, pure clinopyroxene found in the clinopyroxene gabbronorite. Our analyses suggested that the parental melt was similar to that of continental arc basalt and showed signatures of subduction-related metasomatism. Based on mineral chemical and geochemical data, it is interpreted that the parent melt went through changing sequence of crystallization which led to the formation of massive anorthosite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.