Abstract

Late Triassic granitoids containing abundant mafic microgranular enclaves (MMEs) occur widely in the Eastern Kunlun Orogenic Belt (EKOB). In this work, we present mineral chemistry, zircon U-Pb ages and L-Hf isotopes, whole-rock chemistry and S-Nd isotope compositions of the MMEs and host granodiorite from the Huda pluton in the Elashan area within the easternmost domain of the EKOB. These rocks contain inherited (Meso- to Neoproterozoic) and xenocrystic (ca. 240 Ma) zircon grains that yield apparent older ages, whereas the magmatic zircons from MMEs and granodiorite yield similar weighted mean ages around 224 Ma, which are interpreted as their crystallization ages. The MMEs have low SiO2 but high TiO2, TFe2O3, CaO, MgO and MnO concentrations with relatively high Mg# values (48–54) and 100MnO/(MnO + MgO + TFe2O3) ratios (1.2–1.6). They display identical Sr-Nd-Hf isotope compositions to the host granite. Combined with petrological evidence, we suggest that the MMEs are cognate cumulates that formed by pressure quenching during the late stage of magma evolution from the same parental magma of the host granodiorite, rather than a magma mixing origin. The granodiorite is calc-alkaline to high-K calc-alkaline, metaluminous I-type granite. They show relatively low SiO2 and MnO, but high MgO, Al2O3, CaO and TFe2O3 contents with Mg# values of 45–50. They are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), such as Rb, Th, K and Pb, and are depleted in P and high field strength elements (HFSE) including Nb, Ta and Ti. These rocks display slightly negative Eu anomalies and low Sr/Y and La/Yb ratios. Together with the rim-ward chemically evolved nature of some phenocrysts, the comparatively high initial Sr isotope (0.70888–0.70912), low whole-rock εNd(t) (−5.6 to −6.0) and zircon εHf(t) (−3.3 to −0.1) values, and low Nb/Th (0.11–0.26) and Ta/U (0.53–0.68) ratios, we suggest that the granodiorite magma was sourced from the lower crust. Considering their comparatively young two-stage Nd and Hf model ages (1.42–1.49 Ga and 1.13–1.42 Ga, respectively) and same trace element character with the juvenile crust beneath the EKOB, we interpret the juvenile lower crust as the dominant source rocks for the granodiorite. Based on our data and regional geological evidence, we suggest that the partial melting of juvenile crust resulted from delamination-related asthenosphere mantle upwelling. The latter process resulted in extensive melting of the lower crust, producing a major Late Triassic magmatic flare-up event in the EKOB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.