Abstract

The presence and/or generation mechanism of a mantle plume associated with early Permian rifting on the northern margin of Gondwana are topics of debate. Here we report LA–ICP–MS U–Pb zircon ages, whole-rock geochemistry, and Sr–Nd isotope data for high-Ti mafic dykes from southern Qiangtang, Tibet, with the aim of assessing if a mantle plume formed in this region during the early Permian. Zircon U–Pb dating of diabase dykes yielded ages of 290.6±3.5Ma and 290.1±1.5Ma, indicating they were emplaced during the early Permian. Whole-rock geochemistry shows that these mafic dykes are alkaline (Nb/Y=0.73–0.99), have high TiO2 (3.6%–4.8%), and have ocean-island basalt (OIB)-like trace element patterns with enrichments in Nb, Ta, and Ti. Whole-rock Sr–Nd isotope data show a relatively narrow range of εNd(t) (+2.29 to +3.53), similar to basalts produced by a mantle plume (e.g., Emeishan continental flood basalts (ECFB)). Elemental and isotope data suggest that the dykes have undergone fractionation crystallization of mafic minerals and have experienced negligible crustal contamination. These mafic rocks show an affinity to OIB and may have been generated by partial melting of an OIB-type, garnet-bearing asthenospheric mantle source. On the basis of a similar emplacement age to the Panjal Traps basalts in the Himalayas, combined with a tectonic reconstruction of Gondwana in the early to middle Permian, our work suggests that the high-Ti mafic dykes in the Southern Qiangtang terrane and the coeval Panjal Traps basalts in the Himalayas together comprise a ca. 290Ma large igneous province linked to a mantle plume, which probably played an active role in early Permian rifting on the northern margin of Gondwana and was related to circum-Pangea subduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call