Abstract

The Archean Bulautad gneisses in the East of the Ouled Dlim domain adjacent to the Reguibat Rise (West African Craton, Southern Morocco) are intruded by peralkaline A-type granites. These granites form two kilometer-sized bodies, North Derraman and Derraman Highs, and a few small satellites. Prior studies have shown that the chemical and mineralogical compositions of these granites are remarkably uniform, and the North Derraman and Derraman Highs are hypersolvus aegirine–riebeckite granites. The North Derraman granite is intruding the ca. 3.12 Ga Bulautad gneisses while the Derraman High body is emplaced within the ca. 2.84 Ga Leglat schists. Here we present new zircon oxygen and hafnium isotopes data that help to understand the nature of the granite magmatic sources. We analyzed 20 Zircons from one sample in the North Derraman granite core. The zircons have an average δ18O of 5.26±0.22, similar to that of mantle zircons. Their ɛHf525Ma is negative between–3.8 and–11.1 with an average of–6.8±0.7, and their Hf model age is ca. 1.8 Ga, similar to the available whole-rock Nd model age. Combined with previous whole-rock major and trace element studies, our new data suggest that the Derraman granite magmatic sources were ca. 1.8 Ga crustal fenites that formed by refertilization of lower crust granulites by mantle-derived alkaline melts and fluids, likely during the Paleoproterozoic alkaline magmatism that gave rise to the neighboring ca. 1.8 Ga Gleibat Lafhouda carbonatites. The so-generated fenites likely remained undisturbed in the crust until the Middle Cambrian, when they remelted during the rifting event that affected the northern Gondwana at that time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call