Abstract

Cretaceous granitic rocks are widely distributed in the northern to central parts of Kyushu Island, southwest Japan arc, and are divided into two types, granite and tonalite-granodiorite. These rocks are clearly defined by their mineral assemblage, that is, the granite contains mostly muscovite and/or garnet and does not have hornblende, whereas the tonalite-granodiorite is always observed with hornblende. Many workers suggest that most of the granite has low initial Sr isotopic ratios (SrI 90 Ma: 0.7052-0.7059) whose values are similar to those of tonalite-granodiorite (SrI 90 Ma: 0.7050-0.7056). The SiO 2 contents of the granite (67.9 to 78.0 wt.%) are higher than that of tonalite-granodiorite (54.2 to 68.2 wt.%). The granite is characterized by peraluminous compositions, while the tonalite-granodiorite shows metaluminous to peraluminous compositions. The petrogenetic relation between granite and tonalite-granodiorite is examined by a modal batch melting model, which referred to results of already published experiments. The result of the model suggests that the petrogenesis of the peraluminous granitic magma can be explained by an anatexis of metaluminous tonalite in the tonalite-granodiorite under lower to middle crustal conditions and variable fH 2O. Rocks of tonalite to granodiorite in a subduction system generally have low initial Sr isotopic ratios (<0.705), which imply that the magma derived from a highly metaluminous origin such as mafic magma, mafic lower crust and/or subducting slab. In this study, it is regarded that the peraluminous granitic magma can be directly produced by an anatexis of metaluminous tonalite. Therefore, peraluminous granite with low initial Sr isotopic ratios may imply to a first step of recycling of the granitic layer in an active plate margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call