Abstract

The Izera Complex (West Sudetes) contains widespread bodies of metagabbro, metadolerite and amphibolite (the Izera metabasites), and less abundant dykes of weakly altered dolerites, emplaced in a continental setting. The primary magmas of the Izera metabasites were probably formed through adiabatic decompression melting of upwelling asthenosphere (mantle plume) that was associated with the early Palaeozoic fragmentation of Gondwana (initial rift). The rocks are mildly alkaline, transitional-to-tholeiitic basalts and have OIB-like trace element patterns. Trace element modelling reveals that the mafic magmas were generated by variable degrees of partial melting (1–7%) of fertile, garnet-bearing asthenospheric source similar in composition to primitive mantle. Together with an increase in degree of partial melting, the compositional affinity of the magmas and the depth of segregation changed progressively from ca. 70–90 km (mildly alkaline magmas of the metadolerites and amphibolites) to ca. 60–75 km (transitional-to-tholeiitic magmas of the metagabbros). The systematics of incompatible versus compatible element distribution, and major and trace element modelling, indicate that some rocks experienced low-pressure (<5 kbar) differentiation resulting in up to 50% fractionation of clinopyroxene, olivine and minor plagioclase and ilmenite. The genetically distinct weakly altered dolerites are basaltic andesite in composition and possibly related to late- or post-orogenic events in the Karkonosze-Izera Block. These rocks are calc-alkaline, with relatively flat MREE–HREE patterns, enrichment in LREE and other highly incompatible elements relative to primitive mantle, and negative Nb–Ta, Ti, P anomalies. The geochemical features and geochemical modelling, indicate that their primary magmas segregated at depths ≤70 km and were produced by ~2% melting of a metasomatized sublithospheric mantle source presumably containing small amounts of hydrated phases. Although the present study is inconclusive as to the origin of the metasomatic component in the source (? slab-derived fluid/melts, OIB-like alkaline melt percolation of subcontinental lithosphere), the genesis of the Izera basaltic andesites is seemingly related to upwelling of asthenosphere and heat flow triggered by a postulated decoupling of the mantle lithosphere and post-collisional extensional collapse and uplift in the Karkonosze-Izera Block.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.