Abstract

Olivine is one of the most abundant phases in kimberlites and cratonic lamproites, where it occurs as mantle-derived xenocrysts and magmatic phenocrysts or rims overgrowing xenocrystic cores, indicating its prevalence throughout most of the crystallisation sequence of these magmas. Thus, olivine can provide valuable insights into kimberlite and lamproite petrogenesis. Here, we present a detailed study of olivine compositional zoning in two lamproites (P2 and P12) of the Mesoproterozoic Wajrakarur kimberlite-lamproite field in southern India and use these data to propose a genetic link between lamproites and kimberlites in the region.Olivine macrocrysts (i.e., anhedral grains >1 mm) from the P2 and P12 intrusions are strongly zoned. Comparisons with olivine from mantle xenoliths worldwide demonstrate that the cores of olivine macrocrysts are xenocrysts derived from disaggregated mantle wall-rocks. The internal zones and overgrowth rims of olivine macrocrysts and the cores of olivine phenocrysts from P2 and P12 contain magmatic Mg-chromite and Ti-magnetite inclusions and hence crystallized from the host lamproite melt. These magmatic olivine zones show increasing Mg# (molar Mg/(Mg + Fe2+)), CaO and MnO contents with decreasing NiO. This reverse differentiation trend appears to be a characteristic feature of olivine in lamproites from the Wajrakarur field.To evaluate potential petrogenetic links between coeval lamproites and kimberlites from Wajrakarur, the composition of olivine xenocrysts (i.e., macrocryst cores) was compared with that of early crystallized olivine in P2, P12 and previously studied kimberlites and lamproites. The average Mg# of olivine macrocryst cores is directly correlated with the average Mg# of magmatic olivine in lamproites and kimberlites from Wajrakarur. Coupled with their indistinguishable Sr-Nd-Hf isotope compositions, these data suggest derivation of the Wajrakarur lamproites and kimberlites from a common source, The more Fe-rich composition of liquidus olivine in the Wajrakarur lamproites compared to coeval kimberlites suggests a higher degree of assimilation of metasomatised Fe-richer lithospheric mantle by the lamproites and provides a plausible explanation for the different petrological features of the Wajrakarur lamproites and kimberlites Our results suggest that cratonic lamproites can have a remarkably similar petrogenetic history to kimberlites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call