Abstract

The Xinxing granitic pluton is a large batholith cropping out in southern South China with its long axis parallel to the regional NE–trending faults. We conduct the first comprehensive study of zircon laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) U–Pb chronology and trace element chemistry, rock-forming mineral chemistry and whole-rock element and Sr–Nd isotope geochemistry for this pluton. Our new data indicate that the pluton was emplaced during the interval 234–232 Ma, i.e. early Indosinian rather than late Mesozoic as previously considered. The southern pluton consists of syenogranite and monzogranite, which are composed of K-feldspar, oligoclase, quartz and ferri-biotite. The northern pluton consists of monzogranite and granodiorite, which are composed of andesine, K-feldspar, quartz and magnesio-biotite. The southern granites have high SiO2 contents (72.5–79.2 wt%) and high FeOT/(FeOT + MgO) (T refers to total) ratios with low Mg# [atomic Mg/(Mg + FeT)]. They are enriched in rare earth elements and depleted in Sr and Ba with Zr + Y + Ce + Nb >350 ppm and 10,000 × Ga/Al >2.6. Their initial magma temperatures are unusually high (>886 °C). All those features strongly suggest an affinity with A-type granites. The northern granites have lower SiO2 contents (63.4–72.5 wt%) and lower FeOT/(FeOT + MgO) ratios as well as higher Mg# than the southern granites. They are also enriched in rare earth elements and depleted in Sr and Ba, with high Ga/Al ratios and high Zr + Y + Ce + Nb contents. Geochemical data and major element modeling confirm that the southern A-type granites were generated by the moderate degree (~49%) shallow (ca. 15–20 km depth) dehydration melting of the early Paleozoic granitoids triggered by intraplating of basaltic magmas. Subsequent moderate degree (~57%) fractionation of such crustal melts produced the more felsic granites in the southern pluton, whereas subsequent mixing of such crustal melts with about 8 to 48% intraplated mafic magmas generated the less felsic granites in the northern pluton. Interaction of mafic magmas with A-type crustal melts causes the northern granites to lose some diagnostic geochemical features of A-type granites such as high FeOT/(FeOT + MgO) ratios and to be transitional towards I-type granites. We further suggest their origin to have been related to the transtension of the regional NE–trending strike-slip faults coupled with the early Indosinian continental collisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call