Abstract

Late-Variscan granitoid plutons in western Bohemia (Bor, Waidhaus-Rozvadov) have distinct petrographic, geochemical and isotopic features that suggest different magmatic evolutions. The Bor pluton comprises a suite of metaluminous tonalites and quartz diorites (Bor I), weakly peraluminous (monzo-)granites and granodiorites (Bor II) and medium-aluminous, late vein-forming leucomonzogranites (Bor III). The Waidhaus-Rozvadov pluton is strongly peraluminous, comprising a cordierite-biotite granitoid (CBG), the Rozvadov granite (ROG), the Barnau granite (BAG) and the subordinate, highly evolved Kreuzstein (Křižový kamen) granite (KG). Geochemical parameters and initial87Sr/86Sr ratios straddle the boundary between I- and S-type granites in the Bor pluton and are characteristic of purely S-type granites in the Waidhaus-Rozvadov pluton. The Bor II granitoids have been dated by the Rb-Sr whole-rock method at 341±17 Ma (ISr = 0.70724±0.00060). K-Ar biotite and muscovite ages of all units of the Bor pluton are mainly in the range 321-315 Ma. The K-Ar mineral ages are in good agreement with recently published U-Pb zircon data of these rocks. The different units of the Waidhaus-Rozvadov pluton have yielded less well-constrained Rb-Sr whole-rock ages, ranging from 313 to 300 Ma. However, the intrusion sequence is constrained by K-Ar muscovite ages (312-302 Ma), which define a systematic decrease towards the chemically more evolved granite types. Taken as a whole, it seems likely that the new radiometric ages characterize two temporally distinct periods of late-Variscan granitoid intrusion. The regional significance of these periods is emphasized by contemporaneous ages previously found in the adjacent northeastern Bavarian granitoids. The initial Sr and Nd isotope systematics indicate that the Bor and the WaidhausRozvadov plutons were derived from different source rocks. The Bor granitoids reflect the influence of less evolved crustal material which may have been similar to paragneisses of the Tepla-Barrandian region, including the Zone of ErbendorfVohenstraus (ZEV). The Waidhaus-Rozvadov granitoids probably resulted from anatexis of rocks resembling surrounding Moldanubian paragneisses or metapelites. In addition, the two plutons exhibit poorly defined, opposite trends of eNd(T) variation which are ascribed to assimilation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.