Abstract
Petri nets are directed, weighted bipartite graphs that have successfully been applied to the systems biology of metabolic and signal transduction pathways in modeling both stochastic (discrete) and deterministic (continuous) processes. Here we exemplify how molecular mechanisms, biochemical or genetic, can be consistently respresented in the form of place/transition Petri nets. We then describe the application of Petri nets to the reconstruction of molecular and genetic networks from experimental data and their power to represent biological processes with arbitrary degree of resolution of the subprocesses at the cellular and the molecular level. Petri nets are executable formal language models that permit the unambiguous visualization of regulatory mechanisms, and they can be used to encode the results of mathematical algorithms for the reconstruction of causal interaction networks from experimental time series data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.