Abstract

Petite induction of ethidium analogs was examined in both resting and growing yeast cells. All of the analogs used in these experiments were active in dividing cells of Saccharomyces cerevisiae; only the parent ethidium bromide was mutagenic under resting conditions. Incorporation of adenine into mitochondrial DNA appeared to be prevented completely by ethidium and partially inhibited by other analogs. Treatment of growing cells with analogs affected fragmentation of pre-existing DNA as seen by the loss of a mitochondrial antibiotic resistance marker. The rates of elimination of the marker were different; ethidium generated greater loss than the monoamino analogs (3-amino and 8-amino-); and the deaminated analog was least effective. However, in resting yeast the marker was partially eliminated only with treatment of the parent ethidium. The degradation of the mitochondrial DNA by exposure to ethidium compounds was confirmed by agarose gel electrophoresis. Electrophoretic patterns of the mitochondrial DNA treated with each of the analogs under growing conditions and only with ethidium under resting conditions showed degradation of the mitochondrial DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call