Abstract
The hypocotyl of Arabidopsis is well suited for the analysis of cell elongation because it elongates without cell division. We have isolated a new class of recessive mutants, petit1 (pet1), which are defective in aspects of hypocotyl elongation. The short-hypocotyl phenotype of pet1 is caused by shortened cells. The cells of the elongation zone of the hypocotyl are often deformed. pet1 also shows defects in elongation of the roots, flower stalk, leaves, petals, pedicels, and siliques, and these defects cannot be repaired by the application of auxin, gibberellin, brassinolide, or an inhibitor of ethylene biosynthesis. The short-hypocotyl phenotype of pet1 is pronounced only in growth medium supplemented with sucrose, which has promotive effects on hypocotyl elongation. In pet1 this effect is much reduced, causing the sucrose-dependent short-hypocotyl phenotype of pet1. pet1 accumulates more soluble sugars than the wild type and also shows more intensive iodo-starch staining in the cotyledon and hypocotyl. These results indicate that PETIT1 is involved in a sugar-dependent elongation process that may include correct assembly of expanding cell wall architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.