Abstract
We prove the algebraicity of the ratio of the Petersson norm of a holomorphic Hilbert modular form over a totally real number field and the norm of its Saito–Kurokawa lift. We prove a similar result for the Ikeda lift of an elliptic modular form. In order to obtain these we combine some results on local symplectic groups to generalize a special value of the standard L-function attached to a Siegel–Hilbert cuspform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.