Abstract
Abstract We study configurations of 2-planes in that are combinatorially described by the Petersen graph. We discuss conditions for configurations to be locally Cohen–Macaulay and describe the Hilbert scheme of such arrangements. An analysis of the homogeneous ideals of these configurations leads, via linkage, to a class of smooth, general type surfaces in . We compute their numerical invariants and show that they have the unusual property that they admit (multiple) 7-secants. Finally, we demonstrate that the construction applied to Petersen arrangements with additional symmetry leads to surfaces with exceptional automorphism groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.