Abstract
The aim of this paper is to introduce and investigate some of the primary generalizations and unifications of the Peters polynomials and numbers by means of convenient generating functions and p‐adic integrals method. Various fundamental properties of these polynomials and numbers involving some explicit series and integral representations in terms of the generalized Stirling numbers, generalized harmonic sums, and some well‐known special numbers and polynomials are presented. By using p‐adic integrals, we construct generating functions for Peters type polynomials and numbers (Apostol‐type Peters numbers and polynomials). By using these functions with their partial derivative eqautions and functional equations, we derive many properties, relations, explicit formulas, and identities including the Apostol‐Bernoulli polynomials, the Apostol‐Euler polynomials, the Boole polynomials, the Bernoulli polynomials, and numbers of the second kind, generalized harmonic sums. A brief revealing and historical information for the Peters type polynomials are given. Some of the formulas given in this article are given critiques and comments between previously well‐known formulas. Finally, two open problems for interpolation functions for Apostol‐type Peters numbers and polynomials are revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.