Abstract

Petříčekite, ideally CuSe2, is a new mineral from the Předbořice deposit, Central Bohemia Region, Czech Republic. It occurs as rare inclusions, up to 150 μm across, in large eucairite grains closely associated with athabascaite/klockmannite and unknown selenide phases. Petříčekite is opaque with a metallic luster and shows a black streak. It is brittle; the Vickers hardness (VHN15) is 33 kg/mm2 (range: 28–40 kg/mm2) (Mohs hardness of ~2–2½). In reflected light, petříčekite is pale blue grey to pale pinkish, weakly pleochroic and weakly bireflectant from slightly blue-grey to slightly pinkish-grey. Under crossed polars, it is anisotropic with light grey-blue to light pink rotation tints. Internal reflections are absent. Reflectance percentages for the four COM (Commission on Ore Mineralogy) wavelengths (Rmin and Rmax) are 42.35, 41.8 (470 nm), 42.0, 42.2 (546 nm), 41.9, 42.35 (589 nm) and 42.05, 42.85 (650 nm), respectively. Petříčekite is orthorhombic, space group Pnnm, with a = 4.918(2) Å; b = 6.001(2) Å; c = 3.670(1) Å; V = 108.31(1) Å3; Z = 2. The crystal structure (R1 = 0.0336 for 159 reflections with I > 2σ(I)) belongs to the marcasite-type structure. It consists of edge-sharing chains of CuSe6 octahedra parallel to [001] linked by sharing Se2 dimers. The Se–Se bonds are all parallel to (001). The five strongest powder-diffraction lines (d in Å (I/I0) (hkl)) are: 2.938 (70) (101); 2.639 (100) (111); 2.563 (85) (120); 1.935 (70) (211); 1.834 (30) (002). The mean of nine electron-microprobe analyses on the crystal used for the structural study gave Ag 0.22(13), Cu 15.39(15), Hg 0.01(3), Pb 0.03(2), Fe 12.18(10), Pd 0.11(4), S 0.09(1), Se 71.61(29) and total 99.64(41) wt %, corresponding on the basis of a total of three atoms, to (Cu0.53Fe0.48)Σ1.01(Se1.98S0.01)Σ1.99. Additional crystals exhibiting higher Cu contents (up to 0.74 a.p.f.u.) were also investigated. The new mineral has been approved by the IMA-NMNC Commission (2015-111) and named after Václav Petříček, renowned crystallographer of the Institute of Physics of the Czech Academy of Sciences, Prague. Optical, compositional and structural properties confirm that nearly pure petříčekite also formed as late-stage mineral in the Se mineralization at El Dragón, Bolivia. It has end-member composition, Cu0.99Se2.00 (n = 5), and is typically associated with krut’aite of ideal composition, native selenium and goethite. Finally, optical and chemical data indicate that pure petříčekite is likely present also at Sierra de Cacheuta, Argentina.

Highlights

  • The small Předbořice uranium deposit, Central Bohemia Region, Czech Republic (at~49 ̋ 32'57.590" N, 14 ̋ 15'12.449" E) is a famous mineral locality especially for its richness in rare selenides

  • From 1961 to 1978 a total of 250 tons of uranium was mined out of over 100 low temperature hydrothermal veins between the small villages of Předbořice and Lašovice cutting through the krásnohorsko-sedlčanský metamorphic islet, close to its contact with granitoids of central bohemian pluton

  • Further details of the low-temperature selenide association from the Předbořice deposit are provided by Johan (1989) [1]

Read more

Summary

Introduction

The small Předbořice uranium deposit, Central Bohemia Region, Czech Republic (at. ~49 ̋ 32'57.590" N (latitude), 14 ̋ 15'12.449" E (longitude)) is a famous mineral locality especially for its richness in rare selenides. Petříčekite, CuSe2 , has been identified in two specimens bought at a mineral fair It generally occurs either as fractured inclusions in large eucairite grains closely associated with athabascaite/klockmannite and unknown selenide phases which are currently under investigation, or as fractured inclusions in tiemannite closely associated with eskebornite. 1948), Czech crystallographer (Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic), for his outstanding contributions to crystallography in general and mineralogical crystallography in particular. His pioneering studies of incommensurately modulated and composite structures and the development of the computer system. In addition to the description of the new species from Předbořice, we provide the optical properties and compositional as well as structural data for petříčekite from a second occurrence, the El Dragón mine in Bolivia, and we infer the presence of petříčekite from a third occurrence, Sierra de Cacheuta in Argentina, on the basis of optical and chemical data

Physical and Optical Properties
Reflected light photograph ofthe theholotype holotype grain of included
Reflected light images of petříčekite from side
Petříčekite
Chemical Data
X-Ray Crystallography
Results and Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.