Abstract

Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility.

Highlights

  • Spermatogenesis is a highly coordinated, multistep process involving male germ cell proliferation and differentiation

  • By adding various plant extracts to the serum-free medium of spermatogonial stem cell (SSC) cultures, we showed for the first time, to the best of our knowledge, that a butanol fraction of Petasites japonicus (P. japonicus) can promote SSC proliferation

  • In every SSC culture experiment, glial cell line-derived neurotrophic factor (GDNF) was used together with the extracts because GDNF is critical for mouse SSC self-renewal in a serum-free, chemically defined culture system

Read more

Summary

Introduction

Spermatogenesis is a highly coordinated, multistep process involving male germ cell proliferation and differentiation. It starts with sequential mitotic cell divisions of spermatogonia, followed by meiosis of spermatocytes to form round spermatids [1]. Spermatogonial stem cells (SSCs) are the adult stem cells that are capable of both self-renewal and differentiation into daughter spermatogonia. This dual capacity ensures that the testes produce spermatozoa throughout life [2]. The essential functions of SSCs in adult male fertility have been well recognized and have been globally investigated to determine the underlying regulatory mechanism. Methods for the isolation, culture, and transplantation of SSCs have facilitated the development of clinical applications for preserving human male fertility [3,4,5,6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.