Abstract

An efficient and highly scalable bond-order potential code has been developed for the molecular dynamics simulation of bulk silicon, reaching 1.87 Pflops (floating point operations per second) in single precision on 7168 graphic processing units (GPUs) of the Tianhe-1A system. Furthermore, by coupling GPUs and central processing units, we also simulated surface reconstruction of crystalline silicon at the sub-millimeter scale with more than 110 billion atoms, reaching 1.17 Pflops in single precision plus 92.1 Tflops in double precision on the entire Tianhe-1A system. Such simulations can provide unprecedented insight into a variety of microscopic behaviors or structures, such as doping, defects, grain boundaries, and surface reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call