Abstract

The growth of a thin elastic sheet imposes constraints on its geometry such as its Gaussian curvature KG. In this paper, we construct the shapes of sympetalous bell-shaped flowers with a constant Gaussian curvature. Minimizing the bending energies of both the petal and the veins, we are able to predict quantitatively the global shape of these flowers. We discuss two toy problems where the Gaussian curvature is either negative or positive. In the former case, the axisymmetric pseudosphere turns out to mimic the correct shape before edge curling; in the latter case, singularities of the mathematical surface coincide with strong veins. Using a variational minimization of the elastic energy, we find that the optimal number for the veins is either four, five or six, a number that is deceptively close to the statistics on real flowers in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.