Abstract

Abscission is a developmental process that leads to shedding of organs not needed by the plant. Apart from wall hydrolysis, the cells of the abscission zone (AZ) are also believed to undergo programmed cell death (PCD). We show that ethylene-induced petal abscission in Rosa bourboniana is accompanied with the activation of RbPCD1 (PROGRAMMED CELL DEATH LIKE 1) encoding a protein of 78 amino acids. Its expression increases during natural and ethylene-induced petal abscission. Its transcription in most tissues is up-regulated by ethylene. RbPCD1 shows similarity to the N-terminal domain of animal PDCD4 (PROGRAMMED CELL DEATH PROTEIN 4) proteins that are activated during apoptosis and function as transcriptional and translational repressors. RbPCD1 resides in the nucleus and cytoplasm and acts as a transcriptional repressor. Constitutive expression of RbPCD1 in transgenic Arabidopsis is seedling lethal. Heat-induced expression of RbPCD1 under the soybean heat-shock promoter affects leaf function, inflorescence development, silique formation, seed yield and reduces survival. Nuclear localization of RbPCD1 is necessary for manifestation of its effects. RbPCD1 may be necessary to mediate some of the ethylene-induced changes during abscission and senescence in specific tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call