Abstract

The time-dependent field of an electromagnetic pulse can be measured if there is a fast enough gate. For terahertz radiation, femtosecond photoinjection of free carriers into a semiconductor in the presence of the terahertz radiation can serve as the gate1. For visible or infrared radiation, attosecond photoionization of a gas target in the presence of the optical field is a direct analogue2,3,4,5,6,7,8. Here, we show that nonlinear optical mixing9,10,11,12,13 in a medium in which attosecond pulses are being generated can also be used to measure the time-dependent field of an optical pulse. The gate is the phase accumulated by the recollision electron during the subcycle time interval between ionization and recombination. We show that the instantaneous field of an unknown pulse is imprinted onto the deflection of the attosecond extreme ultraviolet pulse using an all-optical set-up with a bandwidth up to 1 PHz. A new laser-field measurement technique is demonstrated that exploits nonlinear optical mixing in a gas in which attosecond pulses are being generated. The instantaneous field of an unknown pulse is imprinted onto the deflection of an attosecond pulse using an all-optical set-up with a bandwidth of up to 1 PHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.