Abstract

Silicon photonics holds significant promise in revolutionizing optical interconnects in data centers and high performance computers to enable scaling into the Pb/s package escape bandwidth regime while consuming orders of magnitude less energy per bit than current solutions. In this work, we review recent progress in silicon photonic interconnects leveraging chip-scale Kerr frequency comb sources and provide a comprehensive overview of massively scalable silicon photonic systems capable of capitalizing on the large number of wavelengths provided by such combs. We first consider the high-level architectural constraints and then proceed to detail the corresponding fundamental device designs supported by both simulated and experimental results. Furthermore, the majority of experimentally measured devices were fabricated in a commercial 300 mm foundry, showing a clear path to volume manufacturing. Finally, we present various system-level experiments which illustrate successful proof-of-principle operation, including flip-chip integration with a co-designed CMOS application-specific integrated circuit (ASIC) to realize a complete Kerr comb-driven electronic-photonic engine. These results provide a viable and appealing path towards future co-packaged silicon photonic interconnects with aggregate per-fiber bandwidth above 1 Tb/s, energy consumption below 1 pJ/bit, and areal bandwidth density greater than 5 Tb/s/mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call