Abstract
Although microplastics (MPs) are ubiquitous contaminants in different ecosystems, their interactions with other pollutants including heavy metals remain relatively unknown. Wheat is an important grain that makes the basis of human food in many parts of the world. Thus, pollutants that affect its production are important subjects of study. This research focuses on the possible effects of the transport of the adsorbed heavy metals onto MPs to the roots of growing wheat. The adsorption of three heavy metals (Pb, Cd, and Zn) onto PET particles was examined. Pb and Cd were selected because they are known to be toxic, while Zn is an essential nutrient for plants. Adsorption experiments were performed using 1 g of PET-MP particles in 20 ml of five different concentrations of each individual element (Pb, Cd, and Zn) (denoted as S-elements). To investigate the antagonistic and synergistic effects of these elements on each other, they were studied collectively with all 3 elements present (denoted as C-elements). Desorption experiments were then performed for three scenarios in which the wheat rhizosphere zone was simulated. Generally, the concentration of the investigated heavy metals adsorption on polyethylene terephthalate (PET) decreased in the order: S-Cd > S-Zn > S-Pb and C-Zn > T-Cd > C-Pb. PET particles exposed to Zn, Cd, and Pb solution adsorbed from 7.2 to 8.5%, 5.3 to 9.8%, and 29.8 to 68.5% of the initial heavy metals concentration, respectively. 11.3 to 15.2%, 12.5 to 23.35%, and 5.5 to 33.6% of the initially adsorbed Zn, Cd, and Pb were desorbed in the wheat rhizosphere zone in the three defined scenarios, respectively. The results show that PET particles can act as a vector in transferring heavy metals to the rhizosphere zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.