Abstract

The immunosuppressive agent FK506 (tacrolimus) has neuroprotective properties in an experimental model of cerebral ischemia. To improve the accuracy of clinical studies in acute stroke, a clinical dose setting should be based on the brain concentration, but not on the blood concentration of agents in humans. We have already established a measurement method using PET for FK506 concentration in the normal monkey brain, which could be applicable for human study; however, under ischemic conditions, in this study, we aimed to examine the brain concentration of FK506 in a monkey model of stroke. Studies were performed on six male cynomolgus monkeys (Macaca fascicularis) and a middle cerebral artery (MCA) occlusion model was used. Regional cerebral blood flow (rCBF) was measured by an intravenous injection of [(15)O]H(2)O 165 min after MCA occlusion. FK506 (0.1 mg/kg) containing [(11)C]FK506 was intravenously injected into the monkeys 180 min after MCA occlusion, and dynamic PET images were acquired for 30 min after administration. FK506 concentrations in the brain were calculated in moles per liter (M) units using the specific activity of injected FK506. MCA occlusion produced ischemia, confirmed by rCBF measurement before the administration of [(11)C]FK506. Fifteen minutes after FK506 (0.1 mg/kg) administration, the concentrations in the contralateral and ipsilateral cortex were 22.4+/-6.4 and 19.7+/-4.0 ng/g, respectively. We successfully measured the brain concentration of FK506 in a monkey model of stroke. The difference between the contralateral and ipsilateral concentrations of FK506 was not significant. This characteristic that FK506 readily penetrates ischemic tissue as well as normal tissue might explain the neuroprotective effect of FK506 in the ischemic brain and is suitable for the treatment of stroke patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.