Abstract

Positron emission tomography (PET) myocardial perfusion imaging in conjunction with tracer-kinetic modeling enables the concurrent assessment of myocardial perfusion and regional myocardial blood flow (MBF) of the left ventricle in absolute terms in milliliters per gram per minute (mL/g/min). The non-invasive quantification of MBF during pharmacologically induced hyperemia, at rest, and corresponding myocardial flow reserve (MFR) opens a new avenue for the identification and characterization of classical or endogen type of coronary microvascular dysfunction (CMD) as functional substrate for microvascular angina in patients with non-obstructive coronary artery disease (CAD) and/or no CAD at all. Further, PET-MBF quantification expands the scope of conventional myocardial perfusion imaging from the identification of advanced, and flow-limiting, epicardial CAD to early stages of atherosclerosis and/or CMD. Adding MBF assessment to myocardial perfusion may also reliably unravel diffuse ischemia owing to significant left main stenosis and/or multivessel CAD, confirmed by peak stress transient ischemic cavity dilation of the left ventricle during maximal vasomotor stress on gated PET images. Owing to high spatial and contrast resolution in conjunction with photon-attenuation free myocardial perfusion PET images, PET is preferentially used for CAD in advanced obesity and women with pronounced breast habitus. With increasing clinical use of cardiac PET perfusion and MBF assessment, individualized, and image-guided cardiovascular treatment decisions in CAD patients is likely to ensue, while its translation into improved cardiovascular outcome remains to be investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call