Abstract
AbstractDeep learning-based methods have shown their superior performance for medical imaging, but their clinical application is still rare. One reason may come from their uncertainty. As data-driven models, deep learning-based methods are sensitive to imperfect data. Thus, it is important to quantify the uncertainty, especially for positron emission tomography (PET) denoising tasks where the noise is very similar to small tumors. In this paper, we proposed a Nouveau variational autoencoder (NVAE) based model using quantile regression loss for simultaneous PET image denoising and uncertainty estimation. Quantile regression loss was performed as the reconstruction loss to avoid the variance shrinkage problem caused by the traditional reconstruction probability loss. The variance and mean can be directly calculated from the estimated quantiles under the Logistic assumption, which is more efficient than Monte Carlo sampling. Experiment based on real \(^{11}\)C-DASB datasets verified that the denoised PET images of the proposed method have a higher mean(±SD) peak signal-to-noise ratio (PSNR) (40.64 ± 5.71) and structural similarity index measure (SSIM) (0.9807 ± 0.0063) than Unet-based denoising (PSNR, 36.18 ± 5.55; SSIM, 0.9614 ± 0.0121) and NVAE model using Monte Carlo sampling (PSNR, 37.00 ± 5.35; SSIM, 0.9671 ± 0.0095) methods.KeywordsPET denoisingDeep learningUncertaintyQuantile regression
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.