Abstract

RationaleRenal positron emission tomography (PET) functional imaging allows non-invasive and dynamic measurements of functional and metabolic parameters. [15O]H2O is used as a perfusion tracer, and [11C]acetate as an oxidative metabolism in this purpose, requiring two injections to assess those fundamental parameters. Yet, in cardiac physiology study, the high first-pass myocardial extraction fraction of [11C]acetate allowed to use its influx rate as a blood flow marker too. Since [11C]acetate has been characterized by a 20–25% single pass renal extraction in dogs, it could be used as a potential tracer for renal perfusion. The aim of this study was to determine whether [11C]acetate influx rate can be used as quantitative in vivo marker of kidney perfusion in human. MethodsIn 10 healthy subjects, dynamic PET acquisitions were performed after [15O]H2O and [11C]acetate injections spaced by a 15-minute interval. As previously validated, with compartmental modeling of kinetics, renal perfusion and oxidative metabolism were estimated respectively with influx rate of [15O]H2O and efflux rate of [11C]acetate. Additionally, influx rate of [11C]acetate was regressed to influx rate of [15O]H2O. ResultsRenal time activity curves of [11C]-acetate was best fitted with a mono compartmental model compared to a bi-compartmental model (p < 0.0001). [11C]acetate influx rate was significantly correlated with perfusion quantified with [15O]H2O (r2 = 0.37, p < 0.001) at baseline. This regression allowed the computation of a renal [11C]acetate extraction fraction (EF), and further the computation of renal blood flow from its influx rate. ConclusionIn healthy subjects, over a wide range of renal perfusion, direct estimates of renal oxygen consumption as well as tissue perfusion can be obtained by PET with a single tracer [11C]acetate. This approach needs to be validated in CKD patients, and would be of great interest to design clinical protocol aiming at evaluating ischemic nephropathies candidate to revascularization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.